译者序
前言
致谢
作者简介
第1章 从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战
1.1 概述
1.2 本书安排
参考文献
第2章 神经网络基础和线性数据分析模型
2.1 概述
2.2 神经网络及其能力
2.3 生物学的启示
2.4 神经元信息处理的建模
2.5 神经元模型和学习策略
2.5.1 作为一个简单分类器的阈值神经元
2.5.2 神经元和神经集合的学习模型
2.5.2.1 Hebbian学习
2.5.2.2 无监督学习或竞争学习
2.5.2.3 有监督学习
2.5.3 作为分类器的有监督学习的感知器
2.5.3.1 感知器学习算法
2.5.3.2 基于大量现实数据集的感知器实例:根据测定的成长年轮直径辨识鱼的起源
2.5.3.3 统计学中带有线性判别函数分析的感知器比较
2.5.3.4 多种类分类中的多输出感知器
2.5.3.5 使用感知器的高维分类
2.5.3.6 感知器小结
2.5.4 用于线性分类和预报的线性神经元
2.5.4.1 利用delta规则的学习
2.5.4.2 作为分类器的线性神经元
2.5.4.3 作为预报能力子集的线性神经元的分类属性
2.5.4.4 实例:作为预报器的线性神经元
2.5.4.5 线性预报的实例:预报一个家庭的热流
2.5.4.6 线性神经元模型与线性回归的比较
2.5.4.7 实例:多输入线性神经元模型——提高一个家庭的热流预报精确度
2.5.4.8 一个多输入线性神经元与多重线性回归的比较
2.5.4.9 多线性神经元模型
2.5.4.10 多重线性神经网络与正则相关性分析的比较
2.5.4.11 线性神经元和线性网络小结
2.6 小结
习题
参考文献
第3章 用于非线性模式识别的神经网络
3.1 概述
3.2 非线性神经元
3.2.1 神经元激励函数
3.2.1.1 S形函数
3.2.1.2高斯函数
3.2.2 实例:利用非线性神经元对人口增长建模
3.2.3 非线性神经元与非线性回归分析的比较
3.3 单输入多层非线性网络
3.3.1 用单一非线性隐含层神经元处理
3.3.2 实例:用多非线性神经元建立循环现象模型
3.3.2.1 实例1:逼近一个方波
3.3.2.2 实例2:为物种的季节性迁移建立模型
3.4 两输入的多层感知器网络
3.4.1 用非线性神经元处理二维输入
3.4.2 网络输出
3.4.3 实例:二维预报和分类
3.4.3.1 实例1:二维非线性函数逼近
3.4.3.2 实例2:二维非线性分类模型
3.5 用非线性多层感知器网络为多维数据建模
3.6 小结
习题
参考文献
第4章 神经网络对非线性模式的学习
4.1 概述
4.2 非线性模式识别中网络的监督训练
4.3 梯度下降法和误差最小化
4.4 BP学习
4.4.1 实例:BP训练——手工计算
……
第5章 从数据中抽取可靠模式的神经网络模型的实现
第6章 数据探测、维数约简和特征提取
第7章 使用贝叶斯统计的神经网络模型的不确定性评估
第8章 应用自组织映射的方法发现数据中的未知聚类
第9章 神经网络在时间序列预测中的应用
附录
评价“神经网络在应用科学和工程中的应用”