Regression for Categorical Data
作者:
Gerhard Tutz
出版年:
2011-11
页数:
572
定价:
750.00元
ISBN:
9781107009653
内容简介
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. I...
(展开全部)
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods, which provide excellent tools for prediction and the handling of both nominal and ordered categorical predictors. The book is accompanied by an R package that contains data sets and code for all the examples.
该书热门标签
您对《Regression for Categorical Data》有什么评价吗,点击右上角“我想说两句”,说出你的看法吧。
有什么“读后感”吗?您可点击右上角“我要写长评”来进行评价噢。
猜您喜欢读
网友关注
网友关注
精品推荐
分类导航
评价“Regression for Categorical Data”