虽然我们已从互联网上获取了大量的人为数据,但最近却涌现了更多的非人为数据。传感器技术并不时髦,但如何将它们接入互联网确实是新的挑战。有预测表明,在本书出版后不久,20%的互联网非视频流量都将由物理传感器产生 。 地震预测就是一个很好的例子,传感器收集了海量的数据,如何从这些数据中抽取出有价值的信息是一个非常值得研究的课题。1989年,洛马•普列埃塔地震袭击了北加利福尼亚州,63人死亡,3757人受伤,成千上万人无家可归;然而,相同规模的地震2010年袭击了海地,死亡人数却超过23万。洛马•普列埃塔地震后不久,一份研究报告宣称低频磁场检测可以预测地震 ,但后续的研究显示,最初的研究并没有考虑诸多环境因素,因而存在着明显的缺陷 , 。如果我们想要重做这个研究,以便更好地理解我们这个星球,寻找预测地震的方法,避免灾难性的后果,那么我们该如何入手才能更好地从事该研究呢?我们可以自己掏钱购买磁力计,然后再买一些地来安放它们,当然也可以寻求政府的帮助,让他们来处理这些事。但即便如此,我们也无法保证磁力计没有受到任何干扰,另外,我们又该如何获取磁力计的读数呢?这些都不是理想的解决方法,使用移动电话可以低成本的解决这个问题。 现今市面上销售的移动电话和智能手机均带有三轴磁力计,智能手机还有操作系统,可以运行我们编写的应用软件,十几行代码就可以让手机按照每秒上百次的频率读取磁力计的数据。此外,移动电话上已经安装了通信系统,如果可以说服人们安装运行磁力计读取软件,我们就可以记录下大量的磁力计数据,而附带的代价则是非常小的。除了磁力计,智能电话还封装了很多其他传感器,如偏航率陀螺仪、三轴加速计、温度传感器和GPS接收器,这些传感器都可以用于测量研究。 移动计算和传感器产生的海量数据意味着未来我们将面临着越来越多的数据,如何从海量数据中抽取到有价值的信息将是一个非常重要的课题。 .................................................................................... ①参见http://www.gartner.com/it/page.jsp?id=876512,2010年7月29日早晨4点36分检索到的数据。 ②Fraser-Smith et al., “Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake,” Geophysical Research Letters 17 , no. 9 (August 1990), 1465–68. ③ W. H. Campbell, “Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake,” Journal of Geophysical Research 114, A05307, doi:10.1029/2008JA013932 (2009). ④J. N. Thomas, J. J. Love, and M. J. S. Johnston, “On the reported magnetic precursor of the 1989 Loma Prieta earthquake,” Physics of the Earth and Planetary Interiors 173, no. 3–4 (2009), 207–15. ....................................................................................