在前面各章中,我们介绍了数学家们在证明黎曼猜想的漫长征途上所做过的多方面的尝试。这些尝试有些是数值计算,它们虽然永远也不可能证明黎曼猜想,却有可能通过发现反例而否证黎曼猜想——当然,迄今为止并未有人发现反例;有些则是解析研究,它们具有证明黎曼猜想的潜力,但迄今为止距离目标还很遥远。如果小结一下的话,那么这两类尝试虽然很不相同,却都可以被归为直接手段,因为它们的目标都是黎曼猜想本身。 既然这两类直接手段都遇到了困难,那我们不妨来问这样一个问题: 除这些直接手段外,还有没有别的手段可以帮我们研究黎曼猜想,或至少带给我们一些启示呢? 答案是肯定的。 事实上,黎曼猜想虽然是一个极为艰深的难题,但这种长时间无法解决的难题在科学上是并不鲜见的。科学家们对付这种难题的大 思路其实很简单,那就是直接手段行不通时,就采用间接手段。当然,大思路虽然简单,具体采取什么样的间接手段,可就大有讲究了。一般来说,常用的间接手段有两类: 第一类是研究与原问题相等价的问题——那样的问题一旦被解决,原问题自然也就解决了;除了研究等价问题外,人们有时还会研究比原问题更普遍的问题。有读者可能会问:那样的问题难道不应该与原问题同样困难、甚至更困难吗?是的,一般来说,与一个难题相等价或更普遍的问题本身也不太可能是省油的灯。但是,解决难题往往需要灵感,而不同的问题(哪怕是等价的问题)所能激发的灵感是不同的,因此研究那样的问题有时能起到意想不到的作用。第二类则是研究与原问题相类似、但却更简单的问题——这类手段虽不能解决原问题,却有可能带给我们启示。更重要的是,在原问题实在太艰深时,这类手段往往比其他手段更具可行性。 就目前我们对黎曼猜想的了解而言,它看来是属于那种“原问题实在太艰深”的情形,因此我们要介绍的间接手段是“往往比其他手段更具可行性”的第二类间接手段。这类手段在科学研究中有着广泛的应用。比如物理学家们遇到很困难的三维空间中的问题时,往往转而研究二维、一维,甚至零维空间中与原问题相类似的问题。又比如生物学家们从事一些不宜在人体上作尝试的研究时,往往转而用动物作为研究对象。最近比较热门的用凝聚态体系模拟基础问题的做法,也是第二类间接手段的例子。这方面的一个例子,是利用石墨烯(graphene)中的电子运动与相对论量子力学中无质量粒子运动的类似性,来研究后者。此外,2009年受到过一些媒体关注的用特定流体中的声子运动来模拟黑洞附近的光子行为的所谓“声学黑洞”(sonic blackhole)研究也是一个例子。这类手段通俗地讲,其实就是研究“山寨版”的问题。只不过与经济领域中的“山寨版”产品被四处喊打不同,科学领域中的“山寨版”问题不仅不违规,对它们的研究还广受鼓励。有时候,在“山寨版”问题上的突破,甚至能成为重大的科学成就,并获得重大的科学奖项。黎曼猜想就是一个很好的例子,它的艰深与重要,使得“山寨版”的黎曼猜想也“鸡犬升天”,变成了非同小可的问题,研究或解决它的数学家甚至可以获得数学界的最高奖,堪称是史上最牛的“山寨版”。需要补充说明的是,“山寨版”黎曼猜想的重要性并不仅仅来自“正版”黎曼猜想的艰深与重要,它本身以及它与其他数学领域的关联也有着不容忽视的重要性。 为了介绍这种史上最牛的“山寨版”,让我们把时光暂时拉回到1940年。 1940年4月,著名的法国几何学家埃里·嘉当(lie Cartan,1869—1951)收到了一封奇怪的信件,它的寄信人地址是位于法国海滨城市鲁昂(Rouen)的一座军事监狱。 一位著名数学家居然收到一封来自监狱的信件,那会是什么样的信件呢?照常理来说,最大的可能性是某位民间“科学家”(简称民科)的杰作,对于法国数学家,情况尤其如此。因为在这方面,法国科学院(French Academy of Sciences)可谓是开了风气之先——自从一个多世纪前它为费马大定理悬赏以来,民科信件便如雪片般地飞向了法国数学家的手里。那热情,就连一百多年的时光也不足以使之熄灭。自那以后,知名法国数学家收到民科来信就不再是新鲜事了。不过嘉当收到的这封信件却有些不同,它的寄信人地址虽然很“民间”,笔迹却颇为熟悉,因为那笔迹属于一位真正的数学家。那数学家不仅嘉当认识,更是他那数学家儿子昂利·嘉当(Henri Cartan,1904—2008)的好朋友。那位数学家叫做韦伊(André Weil,1906—1998),他一生的许多重要工作虽然还有待于此刻拿在嘉当手里的这封监狱来信来揭开序幕,但当时的他就已在代数、分析、数论等诸多领域中享有了一定的声誉。五年前,他还与几位志同道合的年轻数学家(其中包括昂利·嘉当)一同,创立了一个后来大名鼎鼎的数学学派——布尔巴基学派。 嘉当对笔迹的细心留意使那封监狱来信免遭了被弃之垃圾桶的命运,也为我们的黎曼猜想之旅增添了一段新的故事。